Math Blog & Mix Content

Sunday, July 29, 2018

Metode Penyelesaian Pertidaksamaan Nilai Mutlak dan Contohnya

Pertidaksamaan nilai mutlak

adalah suatu Pertidaksamaan yang variabelnya berada di dalam tanda nilai mutlak. Untuk menyelesaikan pertidaksamaan nilai mutlak digunakan sifat 1. Jika pertidaksamaannya tidak sederhana, gunakan sifat 2. kemudian ubah ke dalam pertidaksamaan kuadrat baku dan cari akar-akarnya. Akar-akar yang didapat adalah batas-batas penyelesaian pertidaksamaan nilai mutlak.

Contoh 1. Carilah penyelesaian dari persamaan nilai mutlak berikut
a) |𝑥 – 2|< 2           b) |2𝑥 – 1|>3             c) |𝑥 + 1|≤ 4         d) |3𝑥 + 1|≥5
jawab:
a) dengan sifat 1-i



  Jadi, himpunan penyelesaiannya adalah {𝑥|0 < 𝑥 < 4, 𝑥 ∈ℝ}.

b) dengan sifat 1-ii

 Jadi, himpunan penyelesaiannya adalah {𝑥|𝑥 < -1  dan 𝑥 >2, 𝑥 ∈ℝ}.

c)  dengan sifat 1-i

   
Jadi, himpunan penyelesaiannya adalah {𝑥|-5 ≤ 𝑥 ≤ 3, 𝑥 ∈ℝ}.


d)  dengan sifat 1-ii




Jadi, himpunan penyelesaiannya adalah {𝑥|𝑥 ≤ -2 dan 𝑥 ≥4/3, 𝑥 ∈ℝ}.


Contoh 2. Carilah penyelesaian dari persamaan nilai mutlak berikut
     a) |4𝑥 – 2|< |𝑥 + 5|                           b) |2𝑥 +1| ≤ |3𝑥 - 2|

 jawab:
a) Gunakan sifat 2




Karena kurva terbuka ke atas (kenapa ?), maka penyelesaian pertidaksamaan kuadrat berada dalam selang  -3/5 < 𝑥 <7/3.
Jadi, penyelesaian |4𝑥 – 2|< |𝑥 + 5| adalah {𝑥| -3/5 < 𝑥 <7/3, 𝑥 ∈ℝ}.


b)  Gunakan sifat 2



Karena kurva terbuka ke bawah ( kenapa ?), maka penyelesaian pertidaksamaan kuadrat berada dalam selang 𝑥 ≤ -1/5 dan 𝑥 ≥ 5.
Jadi, penyelesaian |2𝑥 + 3| ≤ |3𝑥 - 2| adalah {𝑥| 𝑥 ≤ -1/5 dan 𝑥 ≥ 5, 𝑥 ∈ℝ}.


Contoh 3. Carilah penyelesaian dari persamaan nilai mutlak berikut
                                    |𝑥 – 1|² + 4|𝑥 -1| < 5
jawab:

Misal |𝑥 – 1| = 𝑦, pertidaksamaan menjadi




Untuk -5 < 𝑦 , ini sama saja dengan 𝑦 >-5.
|𝑥 – 1| > -5 , dipenuhi olehc semua nilai 𝑥 (kenapa?).
Untuk  𝑦 < 1.



Jadi, penyelesaiannya adalah  {𝑥|0 < 𝑥 < 2, 𝑥 ∈ℝ}.

No comments:

Post a Comment